Intelligent Transport Systems (ITS);
Security;
Trust and Privacy Management
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Intelligent Transport System (ITS).
1 Scope

The present document specifies the trust and privacy management for Intelligent Transport System (ITS) communications. Based upon the security services defined in TS 102 731 [1] and the security architecture define in TS 102 940 [5], it identifies the trust establishment and privacy management required to support security in an ITS environment and the relationships that exist between the entities themselves and the elements of the ITS reference architecture defined in EN 302 665 [2].

The present document identifies and specifies security services for the establishment and maintenance of identities and cryptographic keys in an Intelligent Transport System (ITS). Its purpose is to provide the functions upon which systems of trust and privacy can be built within an ITS.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.

2.1 Normative references

The following referenced documents are necessary for the application of the present document.

[3] ETSI TS 102 867: "Intelligent Transport Systems (ITS); Security; Stage 3 mapping for IEEE 1609.2".

[9] ETSI TS 102 943: "Intelligent Transport Systems (ITS); Security; Confidentiality services".
2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.2] ETSI TR 102 638: "Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions".

[i.3] IETF RFC 4046: "Multicast Security (MSEC) Group Key Management Architecture".

[i.4] IETF RFC 4301: "Security Architecture for the Internet Protocol".

[i.5] IETF RFC 4302: "IP Authentication Header".

[i.6] IETF RFC 4303: "IP Encapsulating Security Payload (ESP)".

[i.8] IETF RFC 3547: "The Group Domain of Interpretation".

[i.9] IETF RFC 3830: "MIKEY: Multimedia Internet KEYing".

[i.10] IETF RFC 4535: "GSAKMP: Group Secure Association Key Management Protocol".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

anonymity: ability of a user to use a resource or service without disclosing the user's identity

authorization authority: authority that provides an ITS-S with permission to invoke ITS applications and services

canonical identifier: structured identifier that is globally unique

enrolment authority: authority that validates that an ITS-S can be trusted to function correctly

pseudonymity: ability of a user to use a resource or service without disclosing its user identity while still being accountable for that use

unlinkability: ability of a user to make multiple uses of resources or services without others being able to link these uses together

unobservability: ability of a user to use a resource or service without others, especially third parties, being able to observe that the resource or service is being used

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AA Authorization Authority
CA Certification Authority
CAM Cooperative Awareness Message
CRL Certificate Revocation List
CSR Certificate Signing Request
DENM Decentralized Environmental Notification Message
EA Enrolment Authority
ITS, Intelligent Transport System
ITS-AID, ITS Application ID
ITS-S, ITS Station
MSEC, Multicast Security
PKI, Public Key Infrastructure
PSID, Provider Service Identifier
SA, Security Association
SSP, Service Specific Permissions
TLS, Transport Layer Security

4 ITS authority hierarchy

4.1 Overview
Trust and privacy management requires secure distribution and maintenance (including revocation when applicable) of trust relationships, which may be enabled by specific security parameters that include 3rd party certificates of proof of identity or other attributes such as pseudonym certificates. Public key certificates and Public Key Infrastructure (PKI) are used to establish and maintain trust between the ITS-S and other ITS stations and authorities.

TS 102 731 [1] defines the security management roles taken by:

- manufacturers:
 - insert an ITS authoritative identity (canonical identifier) into each ITS-S;
- Enrolment Authorities (EA):
 - verify an ITS Station (ITS-S) as a whole; and
- Authorization Authorities (AA):
 - authorize an ITS-S to use a particular application, service, or privilege.

Separation of enrolment (identification and authentication) and authorization has been shown in TS 102 731 [1] as an essential component of privacy management and provides protection against attacks on a user's privacy. However, it is possible for the EA role to be delegated to the manufacturer and for the EA and AA roles to be assumed by a single authority.

NOTE: EN 302 665 [2] defines an ITS registration authority role to protect against the distribution of malicious ITS applications. Registration authorities are responsible for registering and managing ITS applications exclusively and are not involved in operational security management.

4.2 ITS authorities

4.2.1 Enrolment Authority
The EA issues a proof of identity authenticating the canonical identifier issued to the ITS-S. The proof of identity does not reveal the canonical identifier to a 3rd party and may be used by the ITS-S to request authorization of services from an AA.

The functions provided by the EA are as follows:

- the authentication of the canonical identifier of an ITS-S;
- the provision of proof of authentication of the ITS-S.
4.2.2 Authorization Authority

An ITS-S that has enrolled with, and been authenticated by, an EA may apply to an AA for specific permissions within the enrolment authority's domain and the AA's authorization context. These privileges are denoted by means of authorization credentials in the form of IEEE 1609.2 [8] authorisation certificates. Each authorization certificate specifies a particular authorization context which comprises a set of permissions.

EXAMPLE 1: An authorization certificate might grant permission to an ITS-S to broadcast messages from a particular message set. Alternatively, it might grant permission to claim certain privileges.

The authorization context is specified either by explicitly encoding the permissions granted or by including a reference to a known policy that specifies the context.

NOTE: An AA will normally be responsible for a particular set of contexts which may be specified by one or more of the following:

- application (for example, cooperative awareness applications for personal user vehicles, emergency service vehicles or tolling);
- time period;
- geographic region (nation, state, locality); or
- any other criteria that can be encoded.

The authorization system may comprise a hierarchy of authorization authorities with lower-layer authorities authorizing ITS stations and higher-layer authorities authorizing lower-level authorities.

EXAMPLE 2: The following three layer structure might be appropriate for official use vehicles:

a) ITS global (National) authorization authority;

b) ITS regional authorization authority; and

c) ITS local authorization authority.

EXAMPLE 3: For personal user vehicles, it might be appropriate to have a single authorization authority (either national or system-wide) for CAMs and DENMs, because short certificate chains reduce the packet size associated with authorization data.

An AA should be unable to link the proof of authentication to the canonical identifier of an ITS-S without the collusion of the EA that performed the verification of the canonical identifier of the ITS-S.

4.2.3 Root CA

Each CA hierarchy (for EA or AA) has at its summit a Root Certificate, which is the ultimate root of trust for all certificates within that hierarchy. In order to trust an incoming message, an ITS-S must have access at least to the root certificate at the summit of the hierarchy for the authorization certificate attached to the message. The ITS-S may obtain root certificates during the manufacture or maintenance lifecycle stages described in clauses 6.1.1 to 6.1.4 respectively. In principle root certificate information may be distributed over the air through a cross-certification process, but the present document does not specify messages to support this use case.

5 Privacy in ITS

ISO/IEC 15408-2 [i.1] identifies 4 key attributes that relate to privacy:

- anonymity;
- pseudonymity;
- unlinkability; and
- unobservability.
Anonymity alone is insufficient for protection of an ITS user's privacy and unsuitable as a solution for ITS, as one of the main requirements of ITS is that the ITS-S should be observable in order to provide improved safety. Consequently, pseudonymity and unlinkability offer the appropriate protection of the privacy of a sender of basic ITS safety messages (CAM and DENM). Pseudonymity ensures that an ITS-S may use a resource or service without disclosing its identity but can still be accountable for that use [i.1]. Unlinkability ensures that an ITS-S may make multiple uses of resources or services without others being able to link them together [i.1].

Pseudonymity shall be provided by using temporary identifiers in ITS safety messages, and never transmitting the station's canonical identifier in communications between ITS stations. Unlinkability can be achieved by limiting the amount of detailed immutable (or slowly changing) information carried in the ITS safety message, thus preventing the possible association of transmissions from the same vehicle over a long time period (such as two similar transmissions broadcast on different days).

ITS Privacy is provided in two dimensions:

(i) privacy of ITS registration and authorisation signalling:
 - ensured by permitting knowledge of the canonical identifier of an ITS-S to only a limited number of authorities;
 - provided by the separation of the duties and roles of ITS authorities into an entity verifying the canonical identifier known as the Enrolment Authority (EA) and an entity responsible for authorising and managing services known as the Authorization Authority (AA);

(ii) privacy of communications between ITS-Ss.

6 Trust and privacy management

6.1 ITS-S Security Lifecycle

The ITS-S Security Lifecycle includes the following stages:

- manufacture;
- enrolment;
- authorization;
- maintenance.

6.1.1 Manufacture

As part of the ITS-S manufacturing process, the following information elements associated with the identity of the station shall be established within the ITS-S itself and within the Enrolment Authority (EA).

- in the ITS-S, the following information elements shall be established using a physically secure process. The specification of this physically secure process is out of scope for the present document.
 - a canonical identifier which is globally unique (see note 1);
 - contact information for the EA and AA which will issue certificates for the ITS-S:
 - network address;
 - public key certificate;
 - the set of current known trusted EA certificates which the ITS-S may use to initiate the enrolment process;
 - the set of current known trusted AA certificates which the ITS-S may use to trust communications from other ITS-S;
- a public/private key pair for cryptographic purposes; and
- optionally, a canonical certificate which associates the canonical identifier with the public key of the ITS-S and the certificate chain back the root authority.

NOTE 1: the management of the canonical identifier and the means to guarantee uniqueness are not addressed in the present document.

- in the EA, the following four items of information, all associated with each other (see note 2):
 - the permanent canonical identifier of the ITS-S;
 - the enrolment identifier issued in the enrolment certificate;
 - the location of profile information for the ITS-S; and
 - the public key from the key pair belonging to the ITS-S.

NOTE 2: The process for establishing this information within the ITS-S and the EA is beyond the scope of the present document.

6.1.2 Enrolment
The ITS-S requests its enrolment certificate from the EA (see clause 6.2.2.2).

6.1.3 Authorization
Having received the enrolment credentials, the ITS-S requests its authorization certificate(s) from the AA (see clause 6.2.2.3).

6.1.4 Maintenance
If an EA or AA is added to or removed from the system, the associated authority (not defined by the present document) should inform enrolled ITS-Ss of this change. The process for achieving this is beyond the scope of the present document but possible methods include:

- sending a certificate revocation list as specified in IEEE 1609.2 [8] across a wireless interface; or
- providing information to a trusted maintenance entity to enable it to update an individual ITS-S in a controlled environment.

6.2 Public Key Infrastructure

6.2.1 Assumption and requirements
The present document assumes the ITS security reference model that is described in TS 102 940 [5].

6.2.2 Message Sequences

6.2.2.1 Introduction
The message sequences specified in clauses 6.2.2.2 and 6.2.2.3 for ITS-S enrolment and authorization are based on the protocol messages defined in TS 102 867 [3] and IEEE 1609.2 [8]. Each of the messages shall be encoded into a 1609Dot2Data (see clause 6 in IEEE 1609.2 [8]) with the appropriate enumeration set into its "type" field to indicate whether it is encrypted, signed or unsecured. Figure 1 shows an example of the use of 1609Dot2Data structure to provide enrolment/authorization requests and responses.
6.2.2.2 Enrolment Request

The Enrolment Request message shall be sent by an ITS-S to the Enrolment Authority (EA) across the interface at reference point S3 (see Figure 7 in TS 102 940 [5]) to request an enrolment certificate to be used in a subsequent authorization request. Figure 2 shows an example of a message sequence for a successful or unsuccessful enrolment request.

The contents of the ITS-S Enrolment Request message shall be as described in Table 1 and shall be implemented as an IEEE 1609.2 ToBeEncrypted message of type certificate_request [8]. For information only, the content of the ITS-S Enrolment request message is described using ASN.1 [6], [7] in clause A.2.
Table 1: Contents of ITS-S EnrolmentRequest message

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
<th>Contents (see note)</th>
<th>IEEE 1609.2 [8] mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>signerEnrolRequest</td>
<td>The canonical certificate or the public/private key pair that uniquely identifies the ITS-S (initially provided during the bootstrap process)</td>
<td>A certificate or certificate chain that allows the EA to determine which keying material to use to verify the request</td>
<td>Field: info
 Type: SignerIdentifier
 Constraints:
 • type shall be set to a value of either certificate or certificate_chain</td>
</tr>
<tr>
<td>enrolCertRequest</td>
<td>The certificate request</td>
<td>Start time
 End time
 ITS-S' public key
 Certificate specific data</td>
<td>Field: unsigned_csr
 Type: ToBeSignedCertificateRequest
 Constraints:
 • subject_type shall be set to the value sec_data_exch csr
 • cf shall not be set to include the encryption_key flag
 • CertSpecificData . SecDataExchCaScope . permitted_subject_types shall be set to either sec_data_exch_anonymous or sec_data_exch_identified_localized.
 • CertSpecificData . SecDataExchCaScope . name shall be structured as the country code plus ITS service provider code plus ITS-S identifier
 • CertSpecificData . SecDataExchCaScope . region shall be an identifier for the requested area of validity of the enrolment credentials
 • CertSpecificData . SecDataExchCaScope . PsidArray.type shall be set to specified.
 • CertSpecificData . SecDataExchCaScope . PsidArray . permissions_list shall contain a list of the ETSI ITS-AIDs to be supported.</td>
</tr>
<tr>
<td>signature</td>
<td>Signature of the enrolment request</td>
<td>The cryptographic signature over all fields of the enrolment request created using the private key belonging to the ITS-S</td>
<td>Field: signature
 Type: Signature
 Constraints:
 • shall not be set to the value unknown</td>
</tr>
</tbody>
</table>

NOTE: The whole EnrolmentRequest message shall be encrypted using an IEEE 1609.2 [8] approved algorithm and the public key provided by the enrolment authority.

The EnrolmentResponse message shall be sent by the EA to the ITS-S across the interface at reference point S₃ in response to a received EnrolmentRequest message.

The contents of the successful ITS-S Enrolment Response message shall be as described in Table 2 and shall be implemented as an IEEE 1609.2 ToBeEncrypted message of type certificate_response [8]. For information only, the content of the ITS-S Enrolment Response message is described using ASN.1 in clause A.2.
Table 2: Contents of a successful ITS-S EnrolmentResponse message

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
<th>Contents (see note 1)</th>
<th>IEEE 1609.2 [8] mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>ackRequest</td>
<td>An indication of whether an acknowledgement is requested by the Enrolment Authority</td>
<td>(see note 2)</td>
<td>Field: \f Type: flags</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Shall be set to the value Not requested.</td>
</tr>
<tr>
<td>signedCertChain</td>
<td>The enrolment certificate chain</td>
<td>The enrolment certificate containing the pseudonymous identifier to be used by the ITS-S; and the chain of certificates back to the originating enrolment CA</td>
<td>Field: certificate_chain Type: Certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• None</td>
</tr>
<tr>
<td>crlPath</td>
<td>The CRLs required to validate a certificate</td>
<td>Empty as public certificates are not listed in CRLs. (see note 2)</td>
<td>Field: crl_path Type: Crl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Shall be set to the value empty</td>
</tr>
</tbody>
</table>

NOTE 1: The whole EnrolmentResponse message shall be encrypted using an IEEE 1609.2 [8] approved algorithm.

NOTE 2: This element is included only for compatibility with IEEE 1609.2 [8].

The contents of the unsuccessful ITS-S Enrolment Response message shall be as described in Table 3 and shall be implemented as an IEEE 1609.2 ToBeEncrypted message of type certificate_request_error [8]. For information only, the content of the ITS-S Enrolment Request message is described using ASN.1 in clause A.2.

Table 3: Contents of an unsuccessful ITS-S EnrolmentResponse message

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
<th>Contents (see note)</th>
<th>IEEE 1609.2 [8] mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>signerEnrolResp</td>
<td>The enrolment authority identified as signer of this error message</td>
<td>A certificate or certificate chain that allows the ITS-S to determine which keying material to use to verify the response</td>
<td>Field: signer Type: SignerIdentifier Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• type shall be set to a value of either certificate or certificate_chain</td>
</tr>
<tr>
<td>requestHash</td>
<td>Allows the requester to link this response to the request</td>
<td>The first 10 bytes of the SHA-256 hash calculated over the plaintext EnrolmentRequest before the request is encrypted</td>
<td>Field: request_hash Type: opaque Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Shall be of length 10 octets</td>
</tr>
<tr>
<td>enrolResult</td>
<td>The error code of the unsuccessful enrolment response</td>
<td></td>
<td>Field: reason Type: CertificateRequestErrorCode Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• None</td>
</tr>
<tr>
<td>signature</td>
<td>The enrolment authority’s signature over the response</td>
<td>The cryptographic signature of the unsuccessful EnrolmentResponse created using the private key belonging to the enrolment authority</td>
<td>Field: signature Type: Signature Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• shall not be set to the value unknown</td>
</tr>
</tbody>
</table>

6.2.2.3 Authorization Request

The Authorization Request message shall be sent by an ITS-S to the Authorization Authority (AA) across the interface at reference point S2 (see Figure 7 in [5]) to request an authorization certificate to be used in a subsequent ITS communications. Figure 3 shows an example of a message sequence for a successful or unsuccessful authorization request.
Figure 3: Message sequence for authorization request and response

The contents of the ITS-S Authorization Request message shall be as described in Table 4 and shall be implemented as an IEEE 1609.2 ToBeEncrypted message of type certificate_request [8]. For information only, the content of the ITS-S Authorization Request message is described using ASN.1 [6], [7] in clause A.2.

Table 4: Contents of ITS-S AuthorizationRequest message

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
<th>Contents (note 1)</th>
<th>IEEE 1609.2 [8] mapping</th>
</tr>
</thead>
</table>
| signerAuthRequest | The enrolment certificate chain | The enrolment certificate containing the pseudonymous identifier to be used by the ITS-S; and the chain of certificates back to the originating enrolment CA | Field: info
Type: SignerIdentifier
Constraints:
• type shall be set to a value of either certificate or certificate_chain |
| authCertRequest | The certificate request | • Start time
• End time
• ITS-S’ authorization certificate public key
• Subject name - Optional (note 2)
• Additional data - Optional (note 3)
• Permissions
• Region of validity - Optional (note 4) | Field: unsigned_csr
Type: ToBeSignedCertificateRequest
Constraints:
• subject_type shall be set to the value sec_data_exch_anonymous, sec_data_exch_identified_not_localized, or sec_data_exch_identified_localized
• cf shall not be set to include the encryption_key flag
• PsidSspArray.type shall be set to specified |
| signature | Signature of the authorization request | The cryptographic signature over all fields of the enrolment request created using the private enrolment certificate key belonging to the ITS-S | Field: signature
Type: Signature
Constraints:
• shall not be set to the value unknown |

NOTE 1: The whole AuthorizationRequest message shall be encrypted using an IEEE 1609.2 [8] approved algorithm and the public key provided by the authorization authority.

NOTE 2: Shall be included if subject_type in the IEEE 1609.2 unsigned_csr field is set to either sec_data_exch_identified_not_localized or sec_data_exch_identified_localized.

NOTE 3: Shall be included if subject_type in the IEEE 1609.2 unsigned_csr field is set to sec_data_exch_anonymous.

NOTE 4: Shall be included if subject_type in the IEEE 1609.2 unsigned_csr field is set to either sec_data_exch_anonymous or sec_data_exch_identified_localized.

The AuthorizationResponse message shall be sent by the AA to the ITS-S across the interface at reference point S2 in response to a received AuthorizationRequest message.

The contents of the successful ITS-S Authorisation Response message shall be as described in Table 5 and shall be implemented as an IEEE 1609.2 ToBeEncrypted message of type certificate_response [8]. For information only, the content of the ITS-S Authorisation Response message is described using ASN.1 in clause A.2.
Table 5: Contents of a successful ITS-S AuthorizationResponse message

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
<th>Contents (see note 1)</th>
<th>IEEE 1609.2 [8] mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>ackRequest</td>
<td>An indication of whether an acknowledgement is requested by Authorization Authority</td>
<td>(see note 2)</td>
<td>Field: f</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type: flags</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Shall be set to the value Not requested.</td>
</tr>
<tr>
<td>signedCertChain</td>
<td>The authorization certificate chain</td>
<td>The authorization certificate; and the chain of certificates back to the top authorization CA</td>
<td>Field: certificate_chain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type: Certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Shall be set to comply with AuthorizationRequest's authCertRequest.</td>
</tr>
<tr>
<td>reconPrivateValue</td>
<td>The reconstruction private value to derive the private key</td>
<td>Optional field</td>
<td>Field: recon_priv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type: opaque</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Only available if version_and_type equals implicit certificate (3)</td>
</tr>
<tr>
<td>crlPath</td>
<td>The CRLs required to validate a certificate</td>
<td>CRL</td>
<td>Field: crl_path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type: Crl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• None</td>
</tr>
</tbody>
</table>

NOTE 1: The whole AuthorizationResponse message shall be encrypted using an IEEE 1609.2 approved algorithm.
NOTE 2: This element is included only for compatibility with IEEE 1609.2 [8].

The contents of the unsuccessful ITS-S Authorization Response message shall be described in Table 6 and shall be implemented as an IEEE 1609.2 ToBeEncrypted message of type certificate_request_error [8]. For information only, the content of the ITS-S Authorization Request message is described using ASN.1 in clause A.2.

Table 6: Contents of an unsuccessful ITS-S AuthorizationResponse message

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
<th>Contents (see note)</th>
<th>IEEE 1609.2 [8] mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>signerAuthResp</td>
<td>The authorization authority identified as signer of this error message</td>
<td>A certificate or certificate chain that allows the ITS-S to determine which keying material to use to verify the response</td>
<td>Field: signer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type: SignerIdentifier</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• type shall be set to a value of either certificate or certificate_chain</td>
</tr>
<tr>
<td>requestHash</td>
<td>Allows the requester to link this response to the request</td>
<td>The first 10 bytes of the SHA-256 hash calculated over the plaintext AuthorizationRequest before the request is encrypted</td>
<td>Field: request_hash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type: opaque</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Shall be of length 10 octets</td>
</tr>
<tr>
<td>authResult</td>
<td>The error code of the unsuccessful enrolment response</td>
<td></td>
<td>Field: reason</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type: CertificateRequestErrorCode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• None</td>
</tr>
<tr>
<td>signature</td>
<td>The authorization authority's signature over the response</td>
<td>The cryptographic signature of the unsuccessful AuthorizationResponse created using the private key belonging to the authorization authority</td>
<td>Field: signature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type: Signature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraints:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• shall not be set to the value unknown</td>
</tr>
</tbody>
</table>

NOTE: The whole AuthorizationResponse message shall be encrypted using an IEEE 1609.2 approved algorithm.
7 Security association and key management between ITS Stations

A detailed set of use case examples for ITS applications is presented in TR 102 638 [i.2]. In addition, TS 102 940 [5] categorizes the application communication (addressing) patterns used as:

- Broadcast;
- Multicast;
- Unicast.

In contrast to the strictly safety-related broadcast applications (CAM and DENM), multicast and unicast applications are assumed to be offered by several providers and, possibly, to be commercially sensitive. Therefore, the requirements depend heavily on the specific application and the respective business model.

With the exception of broadcast applications, all other multicast and unicast communications can use either asymmetric or symmetric key systems to provide for Security Association (SA) lifecycle and the related key management (registration, key establishment, updates and removal).

Unicast and multicast applications shall use link layer encryption and regular changes of the ITS MAC addresses to protect the privacy of the ITS-S (and its user) as well as all higher layer information from radio channel eavesdropping. Further details can be found in TS 102 942 [4] and TS 102 943 [9].

7.1 Broadcast SAs

Broadcast applications such as CAM and DENM require authentication, authorisation and integrity but not confidentiality. Senders of CAM and DENM shall obtain this service by signing with an authorization certificate using the mechanisms of IEEE 1609.2 [8] (see clause 6.2.2.3 and Table 5, as well as TS 102 867 [3]). Figure 4 illustrates the use of the authorization certificate to sign a CAM or DENM between ITS stations. The "SignerInfo" field in Figure 4 is a 1609.2 field that contains either the certificate or a reference to it.

```
Figure 4: CAM and DENM signed using authorization certificates
```

7.2 Multicast SAs

Multicast applications such as public transport information and Point of Interest notification services require secure group communications with message authentication, authorisation and encryption depending on that group's particular security policy.

An ITS-S may join a multicast group using an authorisation certificate (see clause 6.2.2.3 and Table 5) followed, possibly, by further registration steps.

The key management for multicast applications can be controlled by the multicast service provider or a separate security manager. Such key management may be application-specific or it may use a standard multicast key management system such as the IETF Multicast Security (MSEC) Group Key Management Architecture [i.3], [i.8], [i.9] and [i.10].
7.3 Unicast SAs

Unicast applications such as automatic access control, parking management and media downloading services require secure unicast communications with message authentication, authorisation and encryption.

An ITS-S may join such services using its authorisation certificate (see clause 6.2.2.3 and Table 5) followed, possibly, by further registration protocol steps.

Unicast key management may be application-specific or it may use a standard key management systems such as network layer security using IPsec as defined by the IETF [i.4], [i.5] and [i.6]. Also, security in the transport layer can be provided using methods such as the IETF Transport Layer Security (TLS) [i.7].
Annex A (informative):
ITS security messages specified in ASN.1

A.1 ITS trust and privacy messages specified in ASN.1

The ASN.1 [6] modules in this annex specify data types for ITS trust and privacy services together with useful ASN.1 value notations. The ASN.1 is included here only for guidance. Messages associated with ITS security services should comply with the structures specified here but the definitive encoding of messages in an implementation of the present document is specified in clause 5 of IEEE 1609.2 [8].

A.2 Enrolment and authorization message structures

ITStandp0v0 { itu-t(0) identified-organization(4) etsi(0) itsDomain(5) wg5(5) itstandp(2941) operation(0) version0(0)}

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

EnrolmentRequest ::= SEQUENCE { -- corresponds to the CertificateRequest in 1609.2
 signerEnrolRequest SignerIdentifier,
 enrolCertRequest ToBeSignedEnrolmentCertificateRequest,
 signature Signature }

-- The Enrolment Request message shall be encrypted using an IEEE 1609.2
-- approved algorithm and the public key provided by the EAS

EnrolmentResponse ::= CHOICE { successfulEnrolment SuccessfulEnrolment,
 failedEnrolment FailedEnrolment }

AuthorizationRequest ::= SEQUENCE { signerAuthRequest SignerIdentifier,
 authCertRequest CHOICE {
 anonRequest ToBeSignedAuthCertReq-anon,
 idNonLocRequest ToBeSignedAuthCertReq-idNonLoc,
 idLocRequest ToBeSignedAuthCertReq-idLoc,
 },
 signature Signature }

-- The Authorization Request message shall be encrypted using an IEEE 1609.2
-- approved algorithm and the public key provided by the ITS-S

AuthorizationResponse ::= CHOICE { successfulExplicitAuthorization SuccessfulExplicitAuthorization,
 successfulImplicitAuthorization SuccessfulImplicitAuthorization,
 failedAuthorization FailedAuthorization }

ToBeSignedEnrolmentCertificateRequest ::= SEQUENCE {
 versionAndType ImplicitOrExplicit,
 requestTime ItsTime,
 subjectType SecDataExchCsr,
 cf UseStartVal-AndOr-Lifetime,
 enrolCertSpecificData SecDataExchCaCertSpecificData,
 expiration ItsTime,
 startValidity ItsTime OPTIONAL,
 lifetime CertificateDuration OPTIONAL,
 verificationKey PublicKey,
 responseEncryptionKey PublicKey
}

ToBeSignedAuthCertReq-anon
 ::= SEQUENCE {
 versionAndType ImplicitOrExplicit,
 requestTime ItsTime,
 subjectType SecDataExchAnon,
 cf UseStartVal-AndOr-Lifetime,
 authCertSpecificData SecDataExchAnonymousCertSpecificData,
 startValidity ItsTime OPTIONAL,
 lifetime CertificateDuration OPTIONAL,
 responseEncryptionKey PublicKey
}

ToBeSignedAuthCertReq-idNonLoc ::= SEQUENCE {
 versionAndType ImplicitOrExplicit,
 requestTime ItsTime,
 subjectType SecDataExchIdNonLoc,
 cf UseStartVal-AndOr-Lifetime,
 authCertSpecificData SecDataExchIdentifiedNotLocalizedCertSpecificData,
 startValidity ItsTime OPTIONAL,
 lifetime CertificateDuration OPTIONAL,
 responseEncryptionKey PublicKey
}

ToBeSignedAuthCertReq-idLoc ::= SEQUENCE {
 versionAndType ImplicitOrExplicit,
 requestTime ItsTime,
 subjectType SecDataExchIdLoc,
 cf UseStartVal-AndOr-Lifetime,
 authCertSpecificData SecDataExchIdentifiedLocalizedCertSpecificData,
 startValidity ItsTime OPTIONAL,
 lifetime CertificateDuration OPTIONAL,
 responseEncryptionKey PublicKey
}

SuccessfulEnrolment ::= SEQUENCE {
 ackRequest NotRequested,
 signedCertChain CertificateChain,
 crlPath NullCrl
}

FailedEnrolment ::= FailedCertResponse

SuccessfulExplicitAuthorization ::= SEQUENCE {
 ackRequest NotRequested,
 signedCertChain CertificateChain,
 crlPath Crl
}

SuccessfulImplicitAuthorization ::= SEQUENCE {
 ackRequest NotRequested,
 signedCertChain CertificateChain,
 reconPrivateValue OCTET STRING,
 crlPath Crl
}

FailedAuthorization ::= FailedCertResponse

FailedCertResponse ::= SEQUENCE {
 signerEnrolResp SignerIdentifier,
 requestHash OCTET STRING (SIZE {10}),
 enrolResult CertificateRequestErrorCode,
 signature Signature
}

PublicKey ::= SEQUENCE {
 algorithm EcdsaNistWithShaAlgorithms,
 public-key EccPublicKey
}

PKAlgo algorithm ::= INTEGER
ecdsaNistp224WithSha224 PKAlgo algorithm ::= 0
edsaNistp256WithSha256 PKAlgo algorithm ::= 1
eciesNistp256 PKAlgo algorithm ::= 2
unknownAlgorithm

PKAlgorithm ::= 3

EcdsaNistWithShaAlgorithms ::= PKAlgorithm (ecdsaNistp224WithSha224 | ecdsaNistp256WithSha256)

AcknowledgeRequest ::= BOOLEAN

requested AcknowledgeRequest ::= TRUE
notRequested AcknowledgeRequest ::= FALSE

Requested ::= AcknowledgeRequest (requested)
NotRequested ::= AcknowledgeRequest (notRequested)

SignerIdentifier ::= SEQUENCE {
 type SignerIdType,
 digest CertId8,
 id OCTET STRING
}

SignerIdentifierType ::= Integer8

self SignerIdentifierType ::= 0
certificateDigestWithEcdsap224 SignerIdentifierType ::= 1
certificateDigestWithEcdsap256 SignerIdentifierType ::= 2
certificate SignerIdentifierType ::= 3
certificateChain SignerIdentifierType ::= 4
unknownSigner SignerIdentifierType ::= 5

Self ::= SignerIdentifierType (self)
CertificateDigestWithEcdsap224 ::= SignerIdentifierType (certificateDigestWithEcdsap224)
CertificateDigestWithEcdsap256 ::= SignerIdentifierType (certificateDigestWithEcdsap256)
Cert ::= SignerIdentifierType (certificate)
CertChain ::= SignerIdentifierType (certificateChain)
UnknownSignerIdType ::= SignerIdentifierType (unknownSigner)
SignerIdType ::= SignerIdentifierType (certificate | certificateChain)

CertId8 ::= OCTET STRING (SIZE (8))

Time32 ::= INTEGER (1..4294967295)

CertificateDuration ::= SEQUENCE {
 timeUnit TimeUnit,
 timeValue INTEGER (0..8191)
}

TimeUnit ::= Integer3

seconds TimeUnit ::= 0
minutes TimeUnit ::= 1
hours TimeUnit ::= 2
sixtyHours TimeUnit ::= 3
years TimeUnit ::= 4

ExplicitCertificate ::= SEQUENCE {
 versionAndType ExplicitCert,
 unsignedCertificate CHOICE {
 rootCert UnsignedRootCertificate,
 intermediateCert UnsignedIntermediateCertificate
 },
 signature Signature
}

ImplicitCertificate ::= SEQUENCE {
 versionAndType ImplicitCert,
 unsignedCertificate UnsignedIntermediateCertificate,
 reconstructionValue EccPublicKey
}

RootCertificate ::= ExplicitCertificate

IntermediateCertificate ::= CHOICE {
 explicitCertificate ExplicitCertificate,
 implicitCertificate ImplicitCertificate
}

CertificateChain ::= SEQUENCE {
 intermediateCerts SEQUENCE OF IntermediateCertificate,
 rootCertificate RootCertificate

Certificate ::= CHOICE {
 rootCertificate RootCertificate,
 intermediateCertificate IntermediateCertificate
}

ToBeSignedCertificate ::= CHOICE {
 unsignedIntermediateCert IntermediateCertificate,
 unsignedRootCert RootCertificate
}

UnsignedIntermediateCertificate ::= SEQUENCE {
 subjectType IntermediateCert,
 cf UseStartVal-AndOr-Lifetime,
 scope CHOICE {
 secDataExchCaScope SecDataExchCaScope,
 anonymousScope AnonymousScope,
 identifiedNotLocalizedScope IdentifiedNotLocalizedScope,
 identifiedScope IdentifiedScope
 },
 expiration ItsTime,
 lifetime CertificateDuration OPTIONAL,
 start-validity ItsTime OPTIONAL,
 crl-series Cr1Series,
 verification-key PublicKey OPTIONAL
}

UnsignedRootCertificate ::= SEQUENCE {
 subjectType RootCa,
 cf UseStartVal-AndOr-Lifetime,
 scope RootCaScope,
 expiration ItsTime,
 lifetime CertificateDuration OPTIONAL,
 start-validity ItsTime OPTIONAL,
 crl-series Cr1Series,
 verification-key PublicKey
}

RootCaScope ::= SEQUENCE {
 name IA5String (SIZE (0..31)),
 permittedSubjectTypes SubjectTypeFlags,
 secureDataPermissions PsidArray,
 region GeographicRegion
}

SecDataExchCaScope ::= SEQUENCE {
 eaId IA5String (SIZE (0..32)), -- name of EA
 permittedSubjectTypes SecDataExchCaTypes,
 permissions PsidArray,
 region GeographicRegion
}

IdentifiedScope ::= SEQUENCE {
 subject-name OCTET STRING,
 permissions PsidSspArray,
 region GeographicRegion
}

IdentifiedNotLocalizedScope ::= SEQUENCE {
 subject-name OCTET STRING,
 permissions PsidSspArray
}

AnonymousScope ::= SEQUENCE {
 additional-data OCTET STRING,
 permissions PsidSspArray,
 region GeographicRegion
}

CertificateRequestErrorCode
::= \texttt{ENUMERATED} \{
\texttt{verification-failure}(0),
\texttt{csr-cert-expired}(1),
\texttt{csr-cert-revoked}(2),
\texttt{csr-cert-unauthorized}(3),
\texttt{request-denied}(4),
\texttt{csr-cert-unknown} (5),
\texttt{canonical-identity-unknown} (6) \}

\texttt{PsidArray} ::= \texttt{SEQUENCE} \{
type SpecifiedArray,
\texttt{permissions-list PsidList}
\}

\texttt{Psid} ::= \texttt{CHOICE} \{
its-aid ITS-AID,
port Port
\}

\texttt{PsidList ::= SEQUENCE OF Psid}

\texttt{ITS-AID ::= OCTET STRING \{SIZE (1..4)}}

\texttt{Port ::= SEQUENCE} \{
\texttt{portIndicator PortIndicator,
\texttt{portNumber PortNumber}
\}

\texttt{PortIndicatorType ::= OCTET STRING \{SIZE (1)}}

\texttt{PortIndicator PortIndicatorType ::= 'DF'H}

\texttt{PortNumber ::= OCTET STRING \{SIZE (2)}}

\texttt{PsidSspArray ::= SEQUENCE} \{
type SpecifiedArray,
\texttt{permissions-list PsidSspList}
\}

\texttt{PsidSsp ::= SEQUENCE} \{
its-aid ITS-AID,
ssp SSP
\}

\texttt{PsidSspList ::= SEQUENCE OF PsidSsp}

\texttt{SSP ::= OCTET STRING}

\texttt{ArrayType ::= Integer8}

\texttt{fromIssuer ArrayType ::= 0}

\texttt{specified ArrayType ::= 1}

\texttt{unknownType ArrayType ::= 2}

\texttt{SpecifiedArray ::= ArrayType \{specified\}}

\texttt{Signature ::= EcdsaSignature}

\texttt{EcdsaSignature ::= SEQUENCE} \{
r \texttt{EccPublicKey},
s \texttt{CHOICE} \{
\texttt{ecdsa-nistp224-with-sha224-s Integer28},
\texttt{ecdsa-nistp256-with-sha256-s Integer32}
\}
\}

\texttt{EccPublicKey ::= SEQUENCE} \{
type \texttt{EccPublicKeyType},
x \texttt{CHOICE} \{
\texttt{ecdsa-nistp224-with-sha224-X Integer28},
\texttt{ecdsa-nistp256-with-sha256-X Integer32}
\},
y \texttt{CHOICE} \}

\texttt{ETSI}
ecdsa-nistp224-with-sha224-Y Integer28,
ecdsa-nistp256-with-sha256-Y Integer32
} OPTIONAL

RccPublicKeyType
::= ENUMERATED {
 xCoordinateOnly (0),
 compressedLsbY0 (2),
 compressedLsbY1 (3),
 uncompressed (4)
}

XCoordinateOnly ::= RccPublicKeyType (xCoordinateOnly)
CompressedLsbY0 ::= RccPublicKeyType (compressedLsbY0)
CompressedLsbY1 ::= RccPublicKeyType (compressedLsbY1)
Uncompressed ::= RccPublicKeyType (uncompressed)

SecDataExchCaCertSpecificData ::= SecDataExchCaScope
SecDataExchAnonymousCertSpecificData ::= AnonymousScope
SecDataExchIdentifiedNotLocalizedCertSpecificData ::= IdentifiedNotLocalizedScope
SecDataExchIdentifiedLocalizedCertSpecificData ::= IdentifiedScope

VersionAndType ::= Integer8
 explicitCert VersionAndType ::= 2
 implicitCert VersionAndType ::= 3

ExplicitCert ::= VersionAndType (explicitCert)
ImplicitCert ::= VersionAndType (implicitCert)
ImplicitOrExplicit ::= VersionAndType (explicitCert | implicitCert)

SubjectType ::= Integer8
 secDataExchAnonymousSubj SubjectType ::= 0
 secDataExchIdentifiedNotLocalizedSubj SubjectType ::= 1
 secDataExchIdentifiedLocalizedSubj SubjectType ::= 2
 secDataExchCsrSubj SubjectType ::= 3
 wsaSubj SubjectType ::= 4
 wsaCsrSubj SubjectType ::= 5
 secDataExchCaSubj SubjectType ::= 6
 rootCaSubj SubjectType ::= 255

SecDataExchCa ::= SubjectType (secDataExchCaSubj)
RootCa ::= SubjectType (rootCaSubj)
SecDataExchCsr ::= SubjectType (secDataExchCsrSubj)
SecDataExchAnonymous ::= SubjectType (secDataExchAnonymousSubj)
SecDataExchIdentifiedNotLocalized ::= SubjectType (secDataExchIdentifiedNotLocalizedSubj)
SecDataExchIdentifiedLocalized ::= SubjectType (secDataExchIdentifiedLocalizedSubj)
SecDataExchCaTypes ::= SubjectType (secDataExchAnonymousSubj | secDataExchIdentifiedLocalizedSubj)
IntermediateCert ::= SubjectType (ALL EXCEPT (rootCaSubj))

SubjectTypeFlags
::= BIT STRING {
 messageAnonymous (0),
 messageIdentifiedNotLocalized (1),
 messageIdentifiedLocalized (2),
 messageCsr (3),
 wsa (4),
 wsaCsr (5),
 messageCa (6),
 wsaCa (7),
 crlSigner (8)
}

CertificateContentFlags
::= BIT STRING {
 useStartValidity (0),
 lifetimeIsDuration (1),
 encryptionKey (2)
}

UseStartValidity ::= CertificateContentFlags (useStartValidity)
LifetimeIsDuration ::= CertificateContentFlags (lifetimeIsDuration)
UseStartVal-AndOr-Lifetime ::= CertificateContentFlags (useStartValidity | (ALL EXCEPT {encryptionKey}))

GeographicRegion
::= SEQUENCE {
 region-type RegionType,
 circular-region CircularRegion OPTIONAL,
RegionType ::= Integer8
from-issuer RegionType ::= 0
circle RegionType ::= 1
circle RegionType ::= 2
polygon RegionType ::= 3
none RegionType ::= 4

CircularRegion
::= SEQUENCE
 {center TwoDLocation,
 radius Integer16
 }

RectangularRegion
::= SEQUENCE
 {upper-left TwoDLocation,
 lower-right TwoDLocation
 }

PolygonialRegion := SEQUENCE OF TwoDLocation

TwoDLocation
::= SEQUENCE
 {latitude Sint32,
 longitude Sint32
 }

Crl
::= CHOICE
 {validCrl ValidCrl,
 nullCrl NullCrl
 }

ValidCrl
::= SEQUENCE
 {version Integer8,
 signerCrl SignerIdentifier,
 unsignedCrl ToBeSignedCrl,
 signature Signature
 }

ToBeSignedCrl
::= CHOICE
 {idOnlyCrl IdOnlyCrl,
 idAndExpiryCrl IdAndExpiryCrl
 }

IdOnlyCrl
::= SEQUENCE
 {type IdOnly,
 crlSeries CrlSeries,
 caId OCTET STRING (SIZE (8)),
 crlSerial Integer8,
 startPeriod ItsTime,
 issueDate ItsTime,
 nextCrl ItsTime,
 entries IdList
 }

IdAndExpiryCrl
::= SEQUENCE
 {type IdAndExpiry,
 crlSeries CrlSeries,
 caId OCTET STRING (SIZE (8)),
 crlSerial Integer8,
 startPeriod ItsTime,
 issueDate ItsTime,
 nextCrl ItsTime,
 entries IdAndExpiryList
 }

CrlType
::= ENUMERATED
 {idOnly (0),
 idAndExpiry (1)
IdOnly ::= CrlType (idOnly)
IdAndExpiry ::= CrlType (idAndExpiry)

CrlSeries ::= Integer32

IdList ::= SEQUENCE OF CrlEntryId

IdAndExpiryList ::= SEQUENCE {
crlId CrlEntryId,
expiry ItsTime
}

CrlEntryId ::= OCTET STRING (SIZE (10))

NullCrl ::= NULL

Integer3 ::= INTEGER (0..7)
Integer8 ::= INTEGER (0..255)
Integer16 ::= INTEGER (0..65535)
Integer28 ::= INTEGER (0..268435456)
Integer32 ::= INTEGER (0..4294967295)

Sint32 ::= INTEGER (-65535..65535)

ItsTime ::= Integer32 -- number of seconds since 00:00:00 UTC 1st January 2004

END
Annex B (informative):
Secret-key use cases and application categories

Clause 4.1.1 in TS 102 940 [5] categorizes application communications patterns as:

- Broadcast;
- Groupcast;
- Unicast with local participants;
- Unicast with remote infrastructure entity;
- Unicast with remote infrastructure entity, communications session needed to persist across multiple contacts with infrastructure entity.

With the exception of broadcast applications, all other controlled multicast and unicast communication may use symmetric key systems to provide trust management and enrolment and authorisation services similar to those of clause 5.2.

In addition, detailed use case examples are presented annex C in TR 102 638 [i.2]. The symmetric key systems can be used in all the use cases in clause C.3 and electronic payment use cases such as Electronic toll collect (clause C.2.9).
Annex C (informative):
Extensions to IEEE 1609.2 to support additional security functions

C.1 Rationale
In order to be able to offer ITS security standards which are truly global, the present document and its related specifications (TS 102 940 [5], TS 102 942 [4] and TS 102 943 [9]) have been developed as profiles of IEEE 1609.2 [8]. However, there are some capabilities that are not included in IEEE 1609.2 [8] but could usefully be included in a future edition of 1609.2.

C.2 Use of a cryptographic digest of the signer identifier
If the requester of an enrolment certificate is already known to the certificate authority then the authority will be able to correctly interpret a signer identifier with a digest type. Consequently, it would be beneficial for IEEE 1609.2 [8] to allow the signer field to take the value certificate_digest_with_ecdsap224 or certificate_digest_with_ecdsap256 in a ToBeEncrypted message of type certificate_request.

C.3 Encryption of the signer identifier in an authorization certificate request
In order to support the presence of an encrypted signer identifier in an authorization certificate request, make the following changes:

<table>
<thead>
<tr>
<th>Table C.1: Encryption of Signer Identifier in IEEE. 1609.2 [8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SignerIdentifierType</td>
</tr>
<tr>
<td>ContentType</td>
</tr>
<tr>
<td>SignerIdentifier</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ToBeEncrypted (see note)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NOTE:</td>
</tr>
</tbody>
</table>
C.4 Request and transmission of multiple authorization certificates

In order to save processing and communications bandwidth, it would be useful to be able to request and receive multiple authorization certificates using a single request and a single response. This can be achieved with the following changes to the 1609.2 data types:

- Modify `ToBeSignedCertificate` such that more than one `PublicKey` can be included, as follows:

  ```
  PublicKey verification_key<var>;  
  ```

- Move all elements except the `Crl` element from `ToBeEncryptedCertificateResponse` to a new type, `CertificateResponse`.

- Add a new element to `ToBeEncryptedCertificateResponse`, as follows:

  ```
  ToBeEncryptedCertificateResponse  
  {
  CertificateResponse certificate_info<var>;  
  Crl crl_path<var>;  
  } ToBeEncryptedCertificateResponse  
  ```
Annex D (informative):

Bibliography

ISO/IEC 15031-3: "Road vehicles -- Communication between vehicle and external equipment for emissions-related diagnostics -- Part 3: Diagnostic connector and related electrical circuits, specification and use".
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.1.1</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>